
www.manaraa.com

Skyscraper Broadcasting: A New Broadcasting Scheme for

Metropolitan Video-on-Demand Systems

Kien A. Hua Simon Sheu

Department of Computer Science, University of Central Florida

Orlando, FL 32816-2362, U. S. A.

E-mail: fkienhua,sheug@cs.ucf.edu

Abstract

We investigate a novel multicast technique, called

Skyscraper Broadcasting (SB), for video-on-demand

applications. We discuss the data fragmentation tech-

nique, the broadcasting strategy, and the client design.

We also show the correctness of our technique, and de-

rive mathematical equations to analyze its storage re-

quirement. To assess its performance, we compare it to

the latest designs known as Pyramid Broadcasting (PB)

and Permutation-Based Pyramid Broadcasting (PPB).

Our study indicates that PB o�ers excellent access la-

tency. However, it requires very large storage space and

disk bandwidth at the receiving end. PPB is able to ad-

dress these problems. However, this is accomplished at

the expense of a larger access latency and more complex

synchronization. With SB, we are able to achieve the

low latency of PB while using only 20% of the bu�er

space required by PPB.

1 Introduction

Television is an integral part of the majority of the
households throughout the world. We �nd ourselves
turning to it daily to be entertained, educated, or simply
kept informed of current events. Our desire to watch has
fueled an industry eager to deliver a variety of video-
on-demand services. With these services, a subscriber
is able to start the playback of a video of his choice at
a press of a button.

Typically, a large number of video �les are stored in
a set of centralized video servers and played through
high-speed communication networks by geographically
distributed clients. Due to stringent response time re-
quirements, continuous delivery of a video stream has
to be guaranteed by reserving an I/O stream and an

isochronous channel needed for the delivery. In this pa-
per, we will refer to the unit of server capacity needed
to support the continuous playback of one server stream
as a channel. To maximize the utilization of these chan-
nels, e�cient scheduling techniques have been proposed
by Vin and Rangan [20], �Ozden et al. [15, 16], Freed-
man and DeWitt [9], Keeton and Katz [12], Oyang et

al. [14], Rotem and Zhao [18], Dan et al. [6], and
Hua et al. [10], just to name a few. These techniques
are sometimes referred to as user centered [2, 22] in the
sense that the channels are allocated among the users.
Although this approach simpli�es the implementation,
dedicating a stream for each viewer will quickly exhaust
the network-I/O bandwidth at the server communica-
tion ports. In fact, the network-I/O bottleneck has been
observed in many systems, such as TimeWarner Cable's
Full Service Network project in Orlando, Microsoft's
Tiger Video Fileserver [4], and so on.

To address the network-I/O bottleneck faced by the
user-centered approach, the multicast facility of modern
communication networks [5, 13, 11, 17] can be used to
allow users to share a server stream. For example, if two
subscribers make a request for the same video separated
by a small time interval, then by delaying the playback
of the �rst request, the same server stream can be used
to satisfy both requests [7, 3]. In general, requests by
multiple clients for the same video arriving within a
short time duration can be batched together and served
using a single stream. This is referred as batching in [7].
We can divide batching technique into two categories:

� ScheduledMulticast: When a server channel be-
comes available, the server selects a batch to mul-
ticast according to some scheduling policy. For
instance, the Maximum Queue Length (MQL) [7],
proposed by Dan et al., selects the batch with the
most number of pending requests to serve �rst. The
objective of this approach is to maximize the server
throughput. Other scheduled multicast schemes
are presented in [7, 8, 1, 19].

� Periodic Broadcast: The videos are broadcast
periodically, i.e., a new stream is started every B

www.manaraa.com

minutes (batching interval) for a given video. As
a result, the worst service latency experienced by
any subscriber is guaranteed to be less than B min-
utes independent of the current number of pend-
ing requests. Such a guarantee can generally in-

uence the reneging behavior of clients, and there-
fore improve the server throughput. This technique
is sometimes referred as data centered [2, 22] be-
cause the server channels are dedicated to indi-
vidual video objects rather than users. Some re-
cent periodic broadcast techniques are presented in
[7, 22, 1].

It was shown in [7, 8] that a hybrid of the two tech-
niques o�ered the best performance. In this approach,
a fraction of the server channels is reserved and pre-
allocated for periodic broadcast of the popular videos.
The remaining channels are used to serve the rest of the
videos using some scheduled multicast technique. Nev-
ertheless, it was also shown in [7, 8] that the popularities
of movies follow the Zipf distribution with the skew fac-
tor of 0.271. That is, most of the demand (80%) is for
a few (10 to 20) very popular movies. This has moti-
vated us to focus on the popular videos. In this paper,
we introduce a novel technique for doing periodic broad-
cast. We assume that some existing scheduled multicast
scheme is used to handle the less popular videos.

One of the earlier periodic broadcast schemes was
proposed by Dan, Sitaram and Shahabuddin [7]. Since
this approach broadcasts a given video every batching
period, the service latency can only be improved lin-
early with the increases in the server bandwidth. To
signi�cantly reduce the service latency, Pyramid Broad-

casting (PB) technique was introduced by Viswanathan
and Imielinski [22]. In this scheme, each video �le is
partitioned into K segments of geometrically increasing
size; and the server capacity is evenly divided into K

logical channels. The ith channel is used to broadcast
the ith segments of all the videos in a sequential man-
ner. Since the �rst segments are very small, they can be
broadcast a lot more frequently through the �rst chan-
nel. This ensures a smaller wait time for every video.
A drawback of this scheme is that a bu�er size which is
usually more than 70% of the length of the video must
be used at the receiving end. As a result, it is nec-
essary to use disks to do the bu�ering. Furthermore,
since a very high transmission rate is used to transmit
each video segment, an extremely high disk bandwidth
is required to write data to disk as quickly as it re-
ceives the video. To address these issues, Aggarwal,
Wolf and Yu proposed a technique called Permutation-

Based Pyramid Broadcasting (PPB) [1]. PPB is similar
to PB except that each channel multiplexes among its
own segments (instead of transmitting them serially),
and a new stream is started every small period for each

of these segments as in [7]. This strategy allows PPB
to reduce both disk space and I/O bandwidth require-
ments at the receiving ends. The disk size, however,
is still quite signi�cant due to the exponential nature
of the data fragmentation scheme. The sizes of succes-
sive segments increase exponentially causing the size of
the last segment to be very large (typically more than
50% of the video �le). Since the bu�er sizes are deter-
mined by the size of the largest segment, using the same
data fragmentation scheme proposed for PB limits the
savings can be achieved by PPB. To substantially re-
duce the disk costs, we introduce in this paper a new
data fragmentation technique and propose a di�erent
broadcasting strategy. The proposed technique also ad-
dresses the following implementation issue. In PPB, a
client needs to tune into di�erent logical subchannels to
collect its data for a given data fragment if maximum
saving in disk space is desirable. This synchronization
mechanism is di�cult to implement because the tunings
must be done at the right moment during a broadcast.
To avoid this complication, we only tune to the begin-
ning of any broadcast as in the original PB. In other
words, we are able to achieve better savings using a
simpler technique.

The remaining of this paper is organized as follows.
We discuss PB and PPB in more detail in Section 2 to
make the paper self-contained. The proposed technique,
Skyscraper Broadcasting (SB), is introduced in Section
3. The correctness of the proposed technique and its
storage requirement are analyzed in Section 4. In Sec-
tion 5, we present performance study to compare SB
to both PB and PPB. Finally, we give our concluding
remarks in Section 5.

2 Pyramid-based broadcasting schemes

To facilitate our discussion, we need to de�ne the
following notations:

B: The server bandwidth in Mbits/sec.
M : The number of videos being broadcast.
D: The length of each video in minutes.
K: The number of data segments in each video �le.
b: The display rate of each video in Mbits/sec.

PB and PPB share the same data fragmentation
technique. The idea is to partition each video into
K sequential segments of geometrically increasing sizes
[21, 22, 2]. Let Sv

i
denote the i-th fragment of video v.

Its size in minutes, Di, is determined as follows:

Di =

�
D�(��1)
�K�1

i = 1;

D1 ��
i�1 otherwise ;

where � is a number greater than 1. We will discuss how
� is determined in PB and PPB shortly. For the mo-

www.manaraa.com

ment, we note that D1; D2; � � �, DK of each video form
a geometric series with the factor �; and

P
K

i=1Di = D.

In PB scheme, the entire bandwidth is divided into
K logical channels with B

K
Mbits/sec each. The i-th

channel (or, Channel i) will periodically broadcast S1
i
,

S2
i
, : : : , SM

i
in turns, where 1 � i � K. No other

segments are transmitted through this channel. On the
client side, it begins downloading the �rst data fragment
of the requested video at the �rst occurrence, and start
playing it back concurrently. For the subsequent frag-
ments, it downloads the next fragment at the earliest
possible time after beginning to play back the current
fragment. Thus, at any point, the client downloads from
at most two consecutive channels and consumes the data
segment from one of them in parallel. The parameter �
must be chosen in such a way to ensure that the play-
back duration of the current fragment must eclipse the
worst latency in downloading the next fragment. Math-
ematically, we must have the following:

Di

b
�

Di+1 �M
B

K

:

Substitute � �Di for Di+1, we have:

� �
B

b �M �K
:

To determine �, PB uses two methods as follows. The
�rst method, denoted as PB:a for later references, �rst
chooses K = d B

bMe
e and then computes � as � = B

bMK
,

where e is the Euler's constant (e � 2:72.) The other
method, denoted as PB:b, lets K = b

B

bMe
c and then

computes � as � = B

bMK
.

The access time of a video is equal to the access time
of the �rst data fragment which is broadcast on Channel
1. Thus the worst wait time can be computed as follows:

Worst Wait T ime =
M �D1 � b

B

K

=
DMKb(� � 1)

B(�K � 1)
minutes:

By letting K increase as B does, the service latency
will improve exponentially with B. Since pipelining is
used at the client end, a disk bandwidth of b + 2 � B

K

Mbits/sec is required for each client. The �rst term
\b" is the bandwidth required to support the playback.
The number \2" in the second term is due to the fact
that one channel is used to retrieve the current fragment
while another channel is used to prefetch the next one.
In terms of storage requirement, PB requires each client
to have a disk space at least as large as 60 � b � (DK �
bKDK

B
+ DK�1) Mbits since playing back Sv

K�1 while
receiving both Sv

K�1 and S
v

K
incurs the maximum space

requirement.

We note that since � is kept around e, under a large
B, the disk bandwidth and storage requirements ap-
proach b(2Me + 1) ' 55:36b Mbits/sec and bD(1 �
1
e
)(1 � 1

Me
+ 1

e
) ' 0:84(60bD) Mbits if M = 10, re-

spectively. Hence disk bandwidth requirement is very
high. Furthermore, each client must have a disk space
large enough to bu�er more than 80% of the video �le
in order to use this technique. To reduce these require-
ments, PPB scheme further partitions each logical chan-
nel in PB scheme into P �M subchannels with B

KPM

Mbits/sec each. A \replica" of each video fragment, say
i, is now broadcast on each of the P logical subchannels
with a phase delay of Di

P
minutes. On each subchan-

nel, one segment is repeatedly broadcast in its entirety.
Since the subchannels are time-multiplexed on the log-
ical channel, using smaller bandwidths to transmit the
video segments reduces the disk space requirement at
the receiving ends. To further reduce this requirement,
PPB occasionally pauses the incoming stream to allow
the playback to catch up. This is done by allowing a
client to discontinue the current stream and tune to an-
other subchannel, which broadcasts the same fragment,
at a later time to collect the remaining data. This, how-
ever, is di�cult to implement since a client must be able
to tune to a channel during, instead of at the beginning
of, a broadcast. This is signi�cantly more complex than
in the original PB scheme.

The storage requirement for PPB at each client can
be computed as

60 � b �D �M �K � (�K � �K�2)

B � (�K � 1)

Mbits. The required rate of disk transfer is simply equal
to the sum of display rate and the rate of receiving data,
which is b + B

K�P �M Mbits/sec. The service latency is
simply the access time of the �rst fragment, which is
D1�M�K�b

B
= D1

P+�
minutes. We note that the methods to

determine the design parameters K and � are di�erent
from those of PB. K is determined as b B

3�M�bc, but is
limited within the range 2 � K � 7. The �rst method,
denoted as PPB:a, chooses P = b B

M�K�b
� 2c and then

computes � = B

M�K�b � P . On the other hand, the

second method, denoted as PPB:b, lets P = b
B

M�K�b�2c,
but limits it to be at least 2. � are then computed as
B

M�K�b � P . Since K is limited to 7, the access latency
and storage requirement will eventually improve only
linearly as B increases. As a comparison, the original
PB scheme does not constrain the value of K. and is
able to maintain the exponential latency improvement
for the increases in the very large values of B. We shall
show in Section 4 that PPB actually performs worse
than PB.

www.manaraa.com

3 Skyscraper Broadcasting Scheme

3.1 Channel Design

We divide the server bandwidth of B Mbits/sec into
b
B

b
c logical channels of b Mbits/sec each. These chan-

nels are allocated evenly among the M videos such that
there are K (= b B

bM
c) channels for each video. To

broadcast a video over its K dedicated channels, each
video �le is partitioned intoK fragments using the data
fragmentation scheme described in the next subsection.
Each of these fragments are repeatedly broadcast on its
dedicated channel at its consumption rate (i.e., display
rate).

3.2 Data Fragmentation

Instead of fragmenting the video �les according to a
geometric series [1, �, �2, �3, : : :] as in the pyramid-
based techniques, a series generated by the following
recursive function is used in SB:

f(n) =

8>>>>>><
>>>>>>:

1 n = 1;
2 n = 2; 3;
2f(n � 1) + 1 n mod 4 = 0;
f(n � 1) n mod 4 = 1;
2f(n � 1) + 2 n mod 4 = 2;
f(n � 1) n mod 4 = 3;

or,

f(n) =

8>><
>>:

1 n = 1;
2 n = 2; 3;
(2 + 2bn2 c � n)f(n � 1)+

(1 + 2bn2 c � n)(1 + b
n�4bn

4
c

2 c) otherwise:

For illustration, we show the materialized series in the
following:

[1; 2; 2; 5; 5; 12; 12; 25; 25; 52; 52; : : :] :

We will refer to such a series as a broadcast series in
this paper. The �rst number in the above series signi-
�es that the size of the �rst fragment is one unit, (i.e.,
D1.) Similarly, the size of the second one is two units
(i:e:, 2 �D1); the third one is also two; the fourth one
is �ve; and so forth. Additionally, we use W to restrict
the segments from becoming too large. If some segment
is larger than W times the size of the �rst segment, we
force it to be W units. The rationale is that a bigger
K-th fragment will result in a larger requirement on
the bu�er space at the receiving end as we will discuss
in more detail shortly. We call this scheme Skyscraper

Broadcasting (SB) due to the fact that stacking up the
data fragments in the order they appear in the respec-
tive video �le forms the shape of a very tall skyscraper
(instead of a much shorter and very wide pyramid as in
the case of PB and PPB.) We note that W is the width

of the \skyscraper," which can be controlled to achieve
the desired access latency as follows. The number of
videos determines the parameter K. Given K, we can
control the size of the �rst fragment, D1, by adjusting
W . A smaller W corresponds to a larger D1. Since the
maximumaccess latency isD1, we can reduce the access
latency by using a larger W . The relationship between
W and access latency is given in the following formula:

Access Latency = D1 =
DP

K

i=1min(f(i);W)
;

which can be used to determine W given the desired
access latency.

3.3 Transmitting and Receiving of Seg-

ments

The transmitting of data fragments at the server end
is straightforward. The server multiplexes among the
K �M logical channels; each is used to repeatedly broad-
cast one of the K �M data fragments. At the client
end, reception of segments is done in terms of trans-
mission group, which is de�ned as consecutive segments
having the same sizes. For example, in our broadcast
series [1; 2; 2; 5; 5; 12; 12; 25; 25; 52; 52; : : :], the �rst seg-
ment forms the �rst group; the second and third seg-
ments form the second group (i:e:, \2; 2"); the fourth
and �fth form the third group (i:e:, \5; 5"); and so
forth. A transmission group (A;A; � � � ; A) is called an
odd group if A is an odd number; otherwise, it is called
an even group. We note that the odd groups and the
even groups interleave in the broadcast series. To re-
ceive and playback these data fragments, a client uses
three service routines, an Odd Loader, an Even Loader,
and a Video Player. The Odd Loader and the Even
Loader are responsible for tuning to the appropriate
logical channels to download the odd groups and even
groups, respectively. Each loader downloads its groups
one at a time in its entirety, and in the order they oc-
cur in the video �le. These three routines share a lo-
cal bu�er. As the Odd Loader and Even Loader �ll
the bu�er with downloaded data, the Video Player con-
sumes the data at the rate of a broadcast channel. In
the next section, we will discuss the space requirement
for this bu�er, and show that SB is able to support
jitter-free playback.

4 Correctness and Storage Analyses

We recall that the video fragments are received by a
client in terms of transmission groups. To investigate
the correctness and analyze the storage requirement for
SB, we need to examine three possible types of group
transition as follows:

www.manaraa.com

60*b*D1

60*b*D1

60*b*D1

60*b*D1

Channel 1

Client arrives

Channel 2
Channel 3

Time

Start time

Segment 2

Segment 3

Overall

Segment 1

T-2 T T+2 T+4 T+6
even

(b) Disk is necessary

Segment 2
Segment 3

Client arrives

Start time

Video playback

Segment 1

T-2 T T+2 T+4 T+6
odd

(a) No disk required

Figure 1: First transition type: (1)) (2; 2).

1. (1)) (2; 2): This transition is a special case and
only happens in the beginning of playing back a
video.

2. (A;A)) (2A+ 1; 2A+ 1): This kind of transi-
tions occurs when A is even. Transitions (2; 2))
(5; 5) and (12; 12)) (25; 25) are examples of this
type.

3. (A;A)) (2A+ 2; 2A+ 2): This kind of transi-
tions occurs when A is odd. Transitions (5; 5))
(12; 12) and (25; 25)) (52; 52) are examples of this
type.

For the �rst type, since the l:c:m: (least common

multiple) of 1 and 2 is 2, there can only be two possi-
ble scenarios as shown in Figure 1. Although channels
1, 2 and 3 repeatedly broadcast segments 1, 2 and 3,
respectively, we show only the broadcast tuned in by
some client. Without loss of generality, we use D1 as
one time unit. Let T be the start time of the video re-
quested by the client. If T is odd, the client does not
need to bu�er the incoming data. In this case, the client
can play back the video data as soon as they arrive. This
is illustrated in Figure 1(a). Let us now focus on the
other scenario shown in Figure 1(b). Since T is even, the
client must start to prefetch the second group as soon as
it begins to play back the �rst group at time T . At time
T + 2, it must start to preload the second half of group
2, while playing back the �rst half of the same group.
This pipelining then continues to play back the second
half of group 2 while preloading the �rst half of group
three, and so on. Obviously, the playback is jitter-free

since the Video Player always �nds prefeteched data in
the bu�er. In terms of storage requirement, the client in
the second scenario has to prefetch D1 minutes of data
during every time unit. Hence the bu�er size required
is 60 � b �D1 Mbits as illustrated in Figure 1(b).

Possible cases of the second type, (A;A)) (2A +
1; 2A+1), are illustrated in Figure 2. The group (A;A)
is composed of segments i and i+1, which are broadcast
on channels i and i + 1, respectively. For convenience,
only the �rst segment, segment i+2, of the group (2A+
1; 2A+ 1) is shown in the �gure. Let t be the required
playback time of group (A;A) or Segment i. We show
in Figure 2 the various possible times for the client to
start receiving group (A;A). Possible broadcast times
for group (2A + 1; 2A + 1) are also illustrated therein.
We note that since A is even, the broadcast of group
(A;A) must begin at some even time. However, since
the g.c.d. (greatest common divisor) of A and 2A + 1
is 1 (i.e., mutually prime), the possible times to start
receiving group (2A+ 1; 2A+ 1) are t; t+ 1; : : : ; t+ 2A.
As illustrated in the �gure, the following six scenarios
can happen:

� The Even Loader starts to download group (A;A)
at time t, and the Video Player immediately plays
back the data as soon as they arrive. The data
from group (2A + 1; 2A + 1) do not arrive at the
Odd Loader until time t+ 2A.

� The Even Loader starts to download group (A;A)
at time t, and the Video Player immediately plays
back the data as soon as they arrive. The data

www.manaraa.com

A
A

A
A

A
A

2A+1

2A+1

2A+1

2A+1

Overall effect
on buffering

60*b*D1*(2A)

60*b*D1*(A-2)

t+1t-1
t+2t-2

t+2-A...
t+2A

...
t+2+A

t

even

...

...

Time

Playback duration
for segments i and i+1

of segment i+2

of segments i and i+1

Possible broadcasts

Possible broadcasts

Figure 2: Second transition type: (A;A)) (2A+ 1; 2A+ 1), A is even.

from group (2A + 1; 2A + 1) do not arrive at the
Odd Loader until time t+ 2A� 1.

� The Even Loader starts to download group (A;A)
at a time before t. The Video Player starts to play
back (A;A) at time t. The data from group (2A+
1; 2A + 1) do not arrive at the Odd Loader until
time t+ 2A.

� The Even Loader starts to download group (A;A)
at a time before t. The Video Player starts to play
back (A;A) at time t. The data from group (2A+
1; 2A + 1) do not arrive at the Odd Loader until
time t+ 2A� 1.

� The Even Loader starts to download group (A;A)
at time t, and the Video Player immediately plays
back the data as soon as they arrive. The data from
group (2A + 1; 2A+ 1) arrives at the Odd Loader
at time t.

� The Even Loader starts to download group (A;A)
at a time before t; and the Video Player begins
to play back the data as soon as they arrive. The
data from group (2A+1; 2A+1) arrives at the Odd
Loader at time t.

We note that for the �rst scenario, no disk bu�er is
required to support the jitter-free playback. For the re-
maining cases, since the Video Player can always �nd
the required data directly from the Even Loader or from
the prefetched bu�er, jitter-free is again guaranteed.
The storage requirement for this case is illustrated in
the plot shown at the bottom of Figure 2. The curves
are based on the worst-case (in terms of storage re-
quirement) scenario corresponding to the earliest possi-
ble broadcast of group (A;A), and the earliest possible
broadcast of group (2A + 1; 2A + 1). We explain the
curves as follows:

� From t+ 2�A to t, the Even Loader �lls the disk
bu�er with data from group (A;A). As a result,
the curve corresponding to group(A;A) rises dur-
ing this period. The curve becomes
at for the
duration from t to t + 2 + A because the Player
starts to consume the data at time t.

� The curve corresponding to group (A;A) drops af-
ter time t+ 2 +A because the Even Loader is idle
while the Player continues to consume data.

� The curve corresponding to group (2A+1; 2A+1)
continues to rise until time t + 2A. This is due to
the fact that the Odd Loader �lls the bu�er with

www.manaraa.com

Playback duration
for segments i and i+1

A
A

A
A

...... ...

A
A

2A+2

2A+2

2A+2

2A+2

...... ...

Overall effect
on buffering

t+1t-1 Timet+1-A
t+2A

...

even
t

60*b*D1*(2A)

...

60*b*D1*(A-1)

t+1+A

of segment i+2

of segments i and i+1

Possible broadcasts

Possible broadcasts

Figure 3: Third transition type: (A;A)) (2A + 2; 2A+ 2), A is odd and playback time of A is even.

data from segment i + 2 during this period. The
curve becomes
at after t+ 2A because the Player
starts to play back segment i+ 2 at that time.

� The curve labeled \overall e�ect" shows the aggre-
gate e�ect of the other two curves. It shows that
the storage requirement is 60 � b �D1 � 2A.

Finally, Let us now examine the third type of group
transition, namely (A;A)) (2A + 2; 2A+ 2). Since A
must be odd, the broadcast of group (A;A) can start
at either an odd time or an even time. The two cases
are illustrated separately in Figure 3 and 4, respectively.
Their interpretation is similar to that given for Figure 2.
Basically, jitter-free playback is assured in either situa-
tion due to the following reasons:

� The two transmission groups are downloaded by
two di�erent loaders. Since we assume that each
loader has the capability to receive data at the
broadcast rate, the two download streams can oc-
cur simultaneously.

� Since the downloading of group (A;A) starts before
or at t, and completes before prior to t + 2A, the
Video Player should be able to start the playback

of (A;A) at time t, and continue to play back the
video segment without any jitter.

� The playback of group (2A+ 2; 2A+ 2) should not
encounter any jitter either since the Even Loader
starts to load this group no later than time t+ 2A
which is the time required to begin the playback of
this group.

We note in Figure 4 that the client might be down-
loading both groups (A;A) and (2A + 2; 2A + 2) si-
multaneously during the time period from t � 1 to t.
During this period, if the client also needs to download
group (A�12 ; A�12), then SB will not work since it allows
only two downloading streams at any one time. For-
tunately, this can never happen since (A�12 ; A�12) is an
even group, and as such its playback must not end at
time t which is odd. We note that if (A�12 ; A�12) ends at
an odd time, then the next broadcast of this group will
necessarily start at an odd time. That is not possible
for any odd groups. The playback of group (A�12 ; A�12),
therefore, must terminate by time t� 1.

The computation of storage requirements under the
third type of group transition are illustrated at the bot-
tom of Figures 4 and Figure 3. Since the explanations
are similar to that discussed for Figure 2, we will not

www.manaraa.com

Playback duration
for segments i and i+1

A
A

...... ...

A
A

A
A

A-1

2

The latest finishing
receiving time
of segment i-1

Overall effect
on buffering

2A+2

2A+2

2A+2

2A+2

t+1t-1 Timet+1-A
t+2A

...

t

...

60*b*D1*(A-1)

t+1+A

odd

60*b*D1*(2A+1)

...
of segment i+2

of segments i and i+1

Possible broadcasts

Possible broadcasts

Figure 4: Third transition type: (A;A)) (2A+ 2; 2A+ 2), A is odd and playback time of A is odd.

discuss them any further. Comparing the storage re-
quirements under the various group transition types,
we notice that the cases illustrated in Figures 2 and 4
are most demanding. Since the bu�er must be large
enough to accommodate the most demanding condi-
tion, we conclude that the storage requirement for SB
is 60 � b �D1 � (W � 1) which is obtained by applying the
formula, given in Figure 2, to the last group transition
of the series (X;X)) (W;W; � � � ;W).

5 Performance study

In this section, we present the performance study
for our SB scheme. For comparison, pyramid-based
schemes, PB:a, PB:b, PPB:a and PPB:b as discussed in
Section 2, are also investigated. To ensure the fairness,
the desired values for the design parameters (i.e., K;P ,
and �) are determined for each technique using its own
methodology. The other parameters are as follows. We
assume that there are M = 10 popular videos requir-
ing periodic broadcast. The playback duration of each
video is D = 120 minutes. They are compressed using
MPEG-1, so that the average playback rate is b = 1:5
Megabits per second. We choose storage requirement,

I/O bandwidth and access latency as our performance
metrics. The formulas for computing these parameters

have been determined for PB and PPB in Section 2. We
derive the corresponding formulas for SB in the follow-
ing:

I=O

bandwidth

requirement

=

8<
:

0 W = 1 or K = 1;
2 � b Mb=s W = 2 or K = 2; 3;
3 � b Mb=s otherwise;

Access latency = D1 =
DP

K

i=1min(f(i);W)
minutes;

Storage requirement = 60 � b �D1 � (W � 1) Mbits:

For the convenience of the reader, we repeat the for-
mulas for each scheme in the tables (Table 1 and 2).
These formulas will be used to make the plots discussed
in the following subsections.

5.1 Determining the Design Parameters

To compare the performance of the three broadcast
schemes, we varied the network-I/O bandwidth from
100 Mbits/sec to 600 Mbits/sec. The rationales for
choosing this range of network-I/O bandwidth in our
study are as follows. First, PB and PPB do not work
if the server bandwidth is less than 90 Mbits/sec (i.e.,
� becomes less than one). Second, 600 Mbits/sec is
large enough to show the trends of the various design

www.manaraa.com

TECHNIQUES I/O BANDWIDTH (Mbits/sec) ACCESS LATENCY (minute) BUFFER SPACE (Mbit)

PB b+ 2B
K

DMKb(��1)
B(�K�1)

60 � b(DK �
bKD

K

B
+DK�1)

PPB b+ B
KPM

D
1
MKb

B

60�bDMK(�K��
K�2)

B(�K�1)

SB 2b or 3b DP
K

i=1

min(f(i);W)
(= D1) 60 � bD1(W � 1)

Table 1: Performance computation.

TECHNIQUES K P �

PB:a d B
bMe

e N/A B
bMK

PB:b b B
bMe

c N/A B
bMK

PPB:a b B
3Mb

c, 2 � K � 7 b B
MKb

� 2c B
MKb

� P

PPB:b b B
3Mb

c, 2 � K � 7 b B
MKb

� 2c, P � 2 B
MKb

� P

SB b B
bM

c N/A N/A

Table 2: Design parameters determination.

0

5

10

15

20

25

30

35

40

100 200 300 400 500 600

T
he

 v
al

ue
s

of
 K

 a
nd

 P

Network-I/O bandwidth (Mb/s)

SB(K)

PB:a(K)
PB:b(K)
PPB(K)

PPB:a(P)PPB:b(P)

(a) The values of K & P

1

1.5

2

2.5

3

3.5

4

100 200 300 400 500 600

T
he

 v
al

ue
 o

f
al

ph
a

Network-I/O bandwidth (Mb/s)

PB:a

PB:b

PPB:a

PPB:b

(b) The value of �

Figure 5: The values of K, P and � under di�erent
network-I/O bandwidth.

schemes.

To facilitate our studies, we �rst need to examine the
design parameters used by each scheme. The desired
values for these parameters under various network-I/O
bandwidths were computed using the formulas given in
the previous sections, and plotted in Figure 5. The
curves for K and for P are labeled with \(K)" and
\(P)", respectively. The curves for � are plotted sep-
arately in Figure 5(b). We observe that the K values
are much larger for the proposed scheme under vari-
ous network-I/O conditions. This means that SB uses
a larger number of signi�cantly smaller data fragments.
This characteristics result in less demanding on storage
bandwidth, shorter access latency and smaller storage
requirement as we will see in the following subsections.

5.2 Disk bandwidth requirement

In this study, we compare the disk bandwidth re-
quirements of the broadcasting schemes under various
network-I/O bandwidths. We investigated the proposed
technique under four di�erent values of W (i.e., the
width of the \skyscraper"), namely 2, 52, 1705, and
54612. They are the values of the 2-nd, 10-th, 20-th and
30-th elements of the broadcast series, respectively. The
reason for not considering larger elements in the series is
due to the fact that we limit our study to network-I/O
bandwidth less than 600 Mbits/sec. Under this condi-
tion, Figure 5(a) indicates that the desired values forW
should correspond to K values less than 40. We note
that these values ofW can be computed using the series
generating function given in Section 3.2.

The results of this study are plotted in Figure 6. For
references, we also show the lines corresponding to b, 4�b,
5�b and 50�b, where b is the playback rate and is equal to
1.5 Mbits/sec or 0.1875 MBytes/sec. We observe that
SB and PPB have similar disk bandwidth requirements

www.manaraa.com

0.1

1

10

100 200 300 400 500 600

D
is

k
ba

nd
w

id
th

 r
eq

ui
re

m
en

t (
M

B
/s

)

Network-I/O bandwidth (Mb/s)

PB:a

PB:b

PPB:a

PPB:b
SB:W=2

SB:W=52, 1705, 54612, infinite

b

4b
5b

50b

Figure 6: Disk bandwidth requirement (MBytes/sec).

at the receiving ends. The requirement for SB, how-
ever, can be lowered if we select W to be 2. As we will
see later that a smaller W reduces storage bandwidth
and space requirements with some sacri�ce on access
latency. In practice, we can control W , or the width
of the skyscraper, to achieve the desired combination of
storage bandwidth requirement, disk space requirement,
and access latency. We note that the curves for SB are
consistent with our analysis in Section 3 showing that
SB requires only 3�b disk bandwidth to ensure jitter-free
performance regardless of theW values. Our results are
also consistent with those observed in [1] in that PB is
very demanding on the storage-I/O bandwidth. It is
shown in Figure 6 that an average bandwidth as high
as 50 times the display rate (about 10 MBytes/sec) is
required by PB.

5.3 Access latency analysis

The performance in terms of access latency is inves-
tigated in this study. Again, we varied the network-I/O
bandwidth between 100 Mbits/sec and 600 Mbits/sec,
and observe its e�ect on the access latency. The plots
are shown in Figure 7.

We observe that the access latency of PPB can be
quite signi�cant. For instance, if the access latency is
required to be less than 0.5 minutes, then we must have
a network-I/O bandwidth of at least 300 Mbits/sec in
order to use PPB. In terms of SB, W can be controlled
to o�er the best performance. More speci�cally, larger

W values can be used to keep the access latency low.
Nevertheless, improving the latency to well below 0.3
minutes is practically insigni�cant. We will observe in
the next section that it is desirable to keep W small in
order to reduce the storage costs at the receiving ends.
Therefore, we must make a trade-o� between access la-
tency and bu�er space requirement. We will revisit this
issue in the next section after examining the storage
requirement. We note that PB o�ers excellent access
latency. However, as we have discussed, improving the
latency from 0.1 minutes to 0.0001 minutes and beyond
is not very interesting.

5.4 Storage requirement

The e�ect of the network-I/O bandwidth on the disk
space requirement under various broadcasting schemes
is plotted in Figure 8. As shown in the �gure, PB
scheme requires each client to have more than 1.0
GBytes of disk space, which is more than 75% of the
length of a video. PPB scheme reduces this require-
ment to about 250 MBytes. The savings, however, are
accomplished by sacri�cing the access latency as dis-
cussed in the last subsection. For instance, when B is
about 320 Mbits/sec, PPB:b requires only 150 MBytes
or so of disk space. Unfortunately, its access latency
in this case is as high as �ve minutes. Under the same
situation, SB scheme with W = 2 has smaller access
latency and requires only 33 MBytes of disk space at
the receiving end.

www.manaraa.com

0.0001

0.001

0.01

0.1

1

10

100 200 300 400 500 600

A
cc

es
s

la
te

nc
y

(m
in

.)

Network-I/O bandwidth (Mb/s)

PB:a & b (very close)

PPB:a

PPB:b

SB:W=2

SB:W=52

SB:W=1705

SB:W=54612

SB:W=infinite

Figure 7: Access latency (minutes).

To determine a good W , we can cross-examine Fig-
ure 7 and Figure 8. If the network-I/O bandwidth of the
server is greater than 200 Mbits/sec, then \W = 52"
is a good choice for the workload. It o�ers an access
latency of approximately 0.1 minute. This good perfor-
mance can be had for a bu�er space of less than 200
MBytes. For instance, if the network-I/O bandwidth
is 600 Mbits/sec, each client needs only 40 MBytes of
bu�er space in order to enjoy an access latency of about
0.1 minutes. Such a combined bene�t is many folds bet-
ter than anything that can be achieved by PB or PPB.
While PB and PPB must make trade-o� between access
latency, storage costs, and disk bandwidth requirement,
the proposed scheme allows the
exibility to win on all
three metrics.

6 Concluding Remarks

Network-I/O has been identi�ed as a serious bottle-
neck in today's media servers. Many researchers have
shown that broadcast is a good remedy for this prob-
lem. In this paper, we surveyed several broadcast-
ing schemes. We discussed drawbacks in the current
designs, and proposed an alternative approach, called
Skyscraper Broadcast (SB), to address the problems.

SB is a generalized broadcasting technique for video-
on-demand applications. Each SB scheme is character-
ized by a broadcast series and a design parameter called
the width of the \skyscraper." In this paper, we focus
on one broadcast series which is used as an example to

illustrate the many bene�ts of the proposed technique.
We showed that the width factor can be controlled to
optimize the desired combination of storage costs, disk
bandwidth requirement and access latency. Our perfor-
mance study indicates that SB can achieve signi�cantly
better performance than the latest techniques known as
Pyramid Broadcasting. Although the original Pyramid

Broadcasting (PB) o�ers excellent access latency, it re-
quires very large storage space and disk bandwidth at
the receiving end. Permutation-Based Pyramid Broad-

casting (PPB) is able to address these problems. How-
ever, this is accomplished at the expense of a larger ac-
cess latency and more complex synchronization. With
SB, we are able to better these schemes on all three
metrics.

References

[1] C. C. Aggarwal, J. L. Wolf, and P. S. Yu. On optimal
batching policies for video-on-demand storage servers.
In Proc. of the IEEE Int'l Conf. on Multimedia Systems
'96, Hiroshima, Japan, June 1996.

[2] C. C. Aggarwal, J. L. Wolf, and P. S. Yu. A
permutation-based pyramid broadcasting scheme for
video-on-demand systems. In Proc. of the IEEE Int'l
Conf. on Multimedia Systems '96, Hiroshima, Japan,
June 1996.

[3] D. P. Anderson. Metascheduling for continuous media.
ACM Trans. on Computer Systems, 11(3):226{252, Au-
gust 1993.

[4] W. J. Bolosky, J. S. Barrera, R. P. Draves, R. P.
Fitzgerald, G. A. Gibson, M. B. Jones, S. P. Levi, N. P.

www.manaraa.com

10

100

1000

100 200 300 400 500 600

St
or

ag
e

re
qu

ir
em

en
t (

M
B

yt
es

)

Network-I/O bandwidth (Mb/s)

PB:a & b (very close)

PPB:a
PPB:b

SB:W=2

SB:W=52
SB:W=1705

SB:W=54612

SB:W=infinite

Figure 8: Storage requirement (MBytes).

Myhrvold, and R. F. Rashid. The tiger video �leserver.
In Proc. of the 6th Int'l Workshop on Network and Op-
erating System Support for Digital Audio and Video,
April 1996.

[5] J. Y. L. Boudec. The Asynchronous Transfer Mode:
A tutorial. Computer Networks and ISDN Systems,
24:279{309, 1992.

[6] A. Dan, Y. Heights, and D. Sitaram. Generalized in-
terval caching policy for mixed interactive and long
video workloads. In Proc. of SPIE's conf. on Multi-
media Computing and Networking, pages 344{351, San
Jose, California, January 1996.

[7] A. Dan, D. Sitaram, and P. Shahabuddin. Scheduling
policies for an on-demand video server with batching. In
Proc. of ACM Multimedia, pages 15{23, San Francisco,
California, October 1994.

[8] A. Dan, D. Sitaram, and P. Shahabuddin. Dynamic
batching policies for an on-demand video server. Mul-
timedia Systems, 4(3):112{121, June 1996.

[9] C. S. Freedman and D. J. DeWitt. The SPIFFI scalable
video-on-demand system. In Proc. of the 1995 ACM
SIGMOD Conf., pages 352{363, San Jose, California,
May 1995.

[10] K. A. Hua, S. Sheu, and J. Z. Wang. Earthworm: A
network memory management technique for large-scale
distributed multimedia applications. In Proc. of the
16th IEEE INFOCOM'97, Kobe, Japan, April 1997.

[11] IEEE Standard 802.6. Distributed Queue Dual Bus
(DQDB) Metropolitan Area Network (MAN), Dec.
1990.

[12] K. Keeton and R. H. Katz. Evaluating video layout
strategies for a high-performance storage server. Mul-
timedia Systems, 3:43{52, 1995.

[13] D. J. Marchok, C. Rohrs, and M. R. Schafer. Multi-
casting in a growable packet (ATM) switch. In IEEE
INFOCOM, pages 850{858, 1991.

[14] Y. Oyang, M. Lee, C. Wen, and C. Cheng. Design of
multimedia storage systems for on-demand playback.
In Proc. of Int'l Conf. on Data Engineering, pages 457{
465, Taipei, Taiwan, March 1995.

[15] B. �Ozden, A. Biliris, R. Rastogi, and A. Silberschatz. A
low-cost storage server for movie on demand databases.
In Proc. of Int'l Conf. on VLDB, pages 594{605, San-
tiago, Chile, September 1994.

[16] B. �Ozden, R. Rastogi, A. Silberschatz, and C. Martin.
Demand paging for video-on-demand servers. In Proc.
of the IEEE Int'l Conf. on Multimedia Computing and
Systems, pages 264{272, Washington, DC, May 1995.

[17] M. A. Rodrigues. Erasure node: Performance improve-
ments for the IEEE 802.6 MAN. In IEEE INFOCOM,
pages 636{643, San Francisco, California, June 1990.

[18] D. Rotem and J. L. Zhao. Bu�er management for video
database systems. In Proc. of Int'l Conf. on Data En-
gineering, pages 439{448, Taipei, Taiwan, March 1995.

[19] S. Sheu, K. A. Hua, and T. H. Hu. Virtual Batching: A
new scheduling technique for video-on-demand servers.
In Proc. of the 5th DASFAA'97, Melbourne, Australia,
April 1997.

[20] H. M. Vin and P. V. Rangan. Designing a multiuser
HDTV storage server. IEEE Journal on Selected Areas
in Communications, 11(1):152{164, Jan. 1993.

[21] S. Viswanathan and T. Imielinski. Pyramid broadcast-
ing for video on demaind service. In IEEE Multimedia
Computing and Networking Conference, volume 2417,
pages 66{77, San Jose, California, 1995.

[22] S. Viswanathan and T. Imielinski. Metropolitan area
video-on-demand service using pyramid broadcasting.
Mulitmedia Systems, 4(4):197{208, August 1996.

